Divergence Minimizations:

From Sample Space to Parameter Space

Mingxuan Yi

University of Bristol

Kantorovich's formula:

For $q, p \in \mathcal{P}(\mathbb{R}^n)$, optimal transport is to find a coupling $u \in \Pi(q, p)$, such that

$$W_2^2(q,p) = \inf_{u \in \Pi(q,p)} \int \|\mathbf{x} - \mathbf{y}\|^2 \mathrm{d}u(\mathbf{x},\mathbf{y}).$$

A coupling is a joint measure satisfying $\int u(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y})$ and $\int u(\mathbf{x}, \mathbf{y}) dy = q(\mathbf{x})$.

• $W_2(q, p)$ is called the Wasserstein-2 distance between q and p.

Brenier's formula:

$$W_2^2(q,p) = \inf_{T} \int \|\mathbf{x} - T(\mathbf{x})\|^2 \mathrm{d}q(\mathbf{x}).$$

where $T : \mathbb{R}^n \to \mathbb{R}^n$, the pushforward $T_{\#}q = p, \phi$ is a convex function such that $T = \nabla_{\mathbf{x}} \phi$.

Wasserstein Gradient Flows

The marginal q_t evolves along the curve to decrease $\mathcal{F}(q_t)$ and the associated particles evolve with the vector field v_t .

Continuity equation (Wasserstein space)

$$\frac{\partial q_t}{\partial t} = \operatorname{div}(q_t \nabla_{W_2} \mathcal{F}(q_t)),$$

Probability flow ODE (Euclidean space):

$$\mathrm{d}\mathbf{x}_t = v_t(\mathbf{x}_t)\mathrm{d}t.$$

If $\{q_t\}$ is a geodesic, then $q_t = ((1-t)id + tT)_{\#}q$, $q_0 = q$, $q_1 = p$.

Riemannian Structure

Continuity equation with a vector field

$$\frac{\partial q_t}{\partial t} = -\mathrm{div}(q_t \mathsf{v}_t)$$

Wasserstein space $(\mathcal{P}(\mathbb{R}^n), W_2)$ can be endowed with a Riemannian structure. Given the characterization of the tangent space for $q \in \mathcal{P}(\mathbb{R}^n)$ as $\mathcal{T}_q \mathcal{P}(\mathbb{R}^n) = \{\nabla_{\mathbf{x}} \phi | \phi \in C^{\infty}(\mathbb{R}^n)\}$ with inner product $\langle \cdot, \cdot \rangle_q$. Denote the tangent vector of a curve q_t as v_t .

$$\begin{split} \frac{\partial \mathcal{F}(q_t)}{\partial t} &= \langle \frac{\delta \mathcal{F}(q_t)}{\delta q_t}, \frac{\partial q_t}{\partial t} \rangle_{L^2} = -\int \frac{\delta \mathcal{F}(q_t)}{\delta q_t} \cdot \operatorname{div}(q_t \mathsf{v}_t) \mathrm{d} \mathsf{x} \\ &= \int \nabla_\mathsf{x} \frac{\delta \mathcal{F}(q_t)}{\delta q_t} \cdot \mathsf{v}_t \mathrm{d} q_t \\ &= \langle \nabla_{W_2} \mathcal{F}(q_t), \mathsf{v}_t \rangle_{q_t} \end{split}$$

The geodesic connecting q and p induced by the metric tensor (inner product) has the length

$$W_2(q,p) = \inf \int_0^1 \sqrt{\langle V_t, V_t \rangle_{q_t}} dt, \quad \text{s.t.} \frac{\partial q_t}{\partial t} = -\operatorname{div}(q_t V_t)$$

A Special Case: Langevin Dynamics

The KL divergence from q to p,

$$\operatorname{KL}(q||p) = \mathcal{F}(q) = \int \log \frac{q(\mathbf{x})}{p(\mathbf{x})} \mathrm{d}q,$$

The first variation is calculated as

$$\frac{\delta \mathcal{F}(q)}{\delta q} = \log q - \log p + 1$$

Continuity equation \rightarrow Fokker-Planck equation

$$\frac{\partial q_t}{\partial t} = \operatorname{div} \big[q_t (\nabla_{\mathbf{x}} \log q_t - \nabla_{\mathbf{x}} \log p) \big],$$

Langevin SDE:

$$\mathrm{d}\mathbf{x}_t = \nabla_{\mathbf{x}} \log p(\mathbf{x}_t) \mathrm{d}t + \sqrt{2} \mathrm{d}\mathbf{w}_t,$$

or the prob flow ODE:

$$\mathrm{d}\mathbf{x}_t = \big[\nabla_{\mathbf{x}} \log p(\mathbf{x}_t) - \nabla_{\mathbf{x}} \log q_t(\mathbf{x}_t)\big] \mathrm{d}t$$

Moving Mass via the Prob Flow ODE (1)

Consider the problem similar to optimal transport:

Given some particles $\mathbf{x}_q \sim q$, how do you move them to another distribution p, if p is represented by some particles \mathbf{x}_p ?

Estimating the vector field via binary classifications (logit trick)

$$\begin{split} \max_{d} \quad & \mathbb{E}_{\mathbf{x} \sim p} \big\{ \log \sigma[d(\mathbf{x})] \big\} + \mathbb{E}_{\mathbf{x} \sim q} \big\{ \log \big(1 - \sigma[d(\mathbf{x})] \big) \big\} \\ \implies & d^*(\mathbf{x}) = \log \big[p(\mathbf{x}) / q(\mathbf{x}) \big] \end{split}$$

Or equivalently, let $D(\mathbf{x}) = \sigma(d(\mathbf{x}))$,

Proposition 1 [Goodfellow et al., 2014]

$$\begin{split} \max_{D} & \mathbb{E}_{\mathbf{x} \sim p} \big\{ \log[D(\mathbf{x})] \big\} + \mathbb{E}_{\mathbf{x} \sim q} \big\{ \log \big(1 - D(\mathbf{x}) \big) \big\} \\ \Longrightarrow D^{*}(\mathbf{x}) &= \frac{p(\mathbf{x})}{p(\mathbf{x}) + q(\mathbf{x})} \Longrightarrow \sigma^{-1}(D^{*}(\mathbf{x})) = \log \big[p(\mathbf{x})/q(\mathbf{x}) \big] \end{split}$$

Bi-level optimization

- 1. Optimizing the discriminator $d(\mathbf{x})$ using samples from $p(\mathbf{x})$ and $q(\mathbf{x})$ such that we approximate $d(\mathbf{x}) \approx \log [p(\mathbf{x})/q(\mathbf{x})]$.
- 2. Forward Euler discretization to the ODE: $\mathbf{x}_{t+1} = \mathbf{x}_t + \epsilon \nabla_{\mathbf{x}} d(\mathbf{x})$

Demo on https://mingxuan-yi.github.io/blog/2023/prob-flow-ode/

Parameterization of the Prob Flow ODE (1)

Suppose there is a generator $\mathbf{x}_{\theta} = g(\mathbf{z}; \theta) \sim q_{\theta}, \quad \mathbf{z} \sim p_{z}$,

Distilling particle flows

1. Move particles along the vector field,

$$\mathbf{x}' = \operatorname{stop_grad} \{ \mathbf{x}_{\theta} + \epsilon \nabla_{\mathbf{x}} d(\mathbf{x}_{\theta}) \}$$

2. Minimizing the quadratic loss

$$\min_{\theta} \quad l(\theta) = \frac{1}{2} \mathbb{E}_{\mathbf{z} \sim p_z} \|g(\mathbf{z}; \theta) - \mathbf{x}'\|^2$$

$$\begin{aligned} \nabla_{\theta} l(\theta) &= \mathbb{E}_{\mathsf{z} \sim p_{\mathsf{z}}} \big[(g(\mathsf{z}; \theta) - \mathsf{x}') \circ \nabla_{\theta} g(\mathsf{z}; \theta) \big] \\ &= -\epsilon \mathbb{E}_{\mathsf{z} \sim p_{\mathsf{z}}} \big[\nabla_{\mathsf{x}} d(\mathsf{x}_{\theta}) \circ \nabla_{\theta} g(\mathsf{z}; \theta) \big] \\ &= -\epsilon \nabla_{\theta} \mathbb{E}_{\mathsf{z} \sim p_{\mathsf{z}}} \big[d(g(\mathsf{z}; \theta)) \big] \end{aligned}$$

Bi-level optimization

1. Obtaining the vector field via training the discriminator d

$$\max_{d} \quad \mathbb{E}_{\mathbf{x} \sim p} \big\{ \log \sigma[d(\mathbf{x})] \big\} + \mathbb{E}_{\mathbf{x} \sim q_{\theta}} \big\{ \log \big(1 - \sigma[d(\mathbf{x})] \big) \big\}$$

2. Parametering particles via training the generator g

$$\min_{g} \quad -\mathbb{E}_{\mathsf{z}\sim p_z}\big[d(g(\mathsf{z};\theta))\big]$$

Vanilla GANs [Goodfellow et al., 2014]

1. Training the discriminator d via

$$\max_{d} \quad \mathbb{E}_{\mathbf{x} \sim p} \left\{ \log \sigma[d(\mathbf{x})] \right\} + \mathbb{E}_{\mathbf{x} \sim q_{\theta}} \left\{ \log \left(1 - \sigma[d(\mathbf{x})] \right) \right\}$$

2. Training the generator g via

$$\min_{g} \quad -\mathbb{E}_{z \sim p_{z}}[h(d(g(z;\theta)))], \quad h(d) = -\log(1 - \sigma(d))$$

The adversarial game:

 $\min_{g} \max_{d} V(g, d) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left\{ \log \sigma[d(\mathbf{x})] \right\} + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}} \left\{ \log \left(1 - \sigma[d(g(\mathbf{z}))] \right) \right\}$

Existing issues:

- The discriminator d(x) loses the dependence on the generator's parameter. Integrating out x in the expectation, V is not a function of g. [Metz et al., 2017, Franceschi et al., 2022]
- 2. The generator only minimizes the second term of the Jensen-Shannon divergence $\mathbb{E}_{z \sim \rho_z} \{ \log (1 \sigma[d(g(z))]) \}$ which is, however, a KL divergence up to a constant.
- 3. Practical algorithms are inconsistent with the theory, a heuristic trick "non-saturated loss" is commonly used to mitigate the gradient vanishing problem. The NS loss takes the form $-\mathbb{E}_{z\sim p_z} \{\log \sigma[d(g(z))]\}.$

We can even modify the generator loss to the logit loss $-\mathbb{E}_{z \sim p_z} \{ d(g(z)) \}$ or the arcsinh loss $-\mathbb{E}_{z \sim p_z} \{ \operatorname{arcsinh} (d(g(z))) \}$.

Figure 1: Generated Celeb-A faces with the logit loss and the arcsinh loss.

All of the above generator losses satisfy

 $-\mathbb{E}_{\mathsf{z}\sim\rho_{\mathsf{z}}}\big\{h[d(g(\mathsf{z}))]\big\},$

where $h: \mathbb{R} \to \mathbb{R}$ is a monotone increasing function with $h'(\cdot) > 0$.

The adversarial game framework lacks a rigorous explanation to these issues.

GAN's theory needs to be reformulated!

Let's go back to the probability flow ODE, rewrite it as

$$\mathrm{d}\mathbf{x}_t = \nabla_{\mathbf{x}} \log r_t(\mathbf{x}_t) \mathrm{d}t, \quad r_t(\mathbf{x}) = \frac{p(\mathbf{x})}{q_t(\mathbf{x})}$$

MonoFlow

MonoFlow is defined by the following ODE:

$$\mathrm{d}\mathbf{x}_t = \nabla_{\mathbf{x}} h\big(\log r_t(\mathbf{x}_t)\big) \mathrm{d}t = h'\big(\log r_t(\mathbf{x}_t)\big) \nabla_{\mathbf{x}} \log r_t(\mathbf{x}_t) \mathrm{d}t$$

where $h: \mathbb{R} \to \mathbb{R}$ is a monotone increasing function with $h'(\cdot) > 0$,

Decreasing the KL divergence

Recall the KL divergence and its Wasserstein gradient,

$$\operatorname{KL}(q||p) = \mathcal{F}(q) = \int \log \frac{q(\mathbf{x})}{p(\mathbf{x})} \mathrm{d}q,$$

$$\nabla_{W_2} \mathcal{F}(q) = \nabla_{\mathbf{x}} \log q_t - \nabla_{\mathbf{x}} \log p = -\log r_t$$

Dissipation rate of the KL divergence

For any $v_t \in \mathcal{T}_{q_t}\mathcal{P}(\mathbb{R}^n)$, the dissipation rate:

$$\begin{aligned} \frac{\partial \mathcal{F}(q_t)}{\partial t} &= \langle \nabla_{W_2} \mathcal{F}(q), \mathsf{v}_t \rangle_{q_t} \\ &= -\int h'(\log r_t(\mathbf{x})) \|\log r_t(\mathbf{x})\|^2 \mathrm{d}q_t \leq 0 \end{aligned}$$

The Probability Flow ODE of *f*-divergences

Given *f*-divergences:

$$\mathcal{F}(q) = \int f(r(\mathbf{x})) dq, \quad r(\mathbf{x}) = p(\mathbf{x})/q(\mathbf{x}),$$

where f is convex and f(1) = 0.

The first variation of *f*-divergence

$$\frac{\delta \mathcal{F}(q)}{\delta q} = f(r) - rf'(r), \quad r = \frac{p}{q}$$

The ODE of *f*-divergence

$$d\mathbf{x} = -\nabla_{\mathbf{x}} \frac{\delta \mathcal{F}(q_t)}{\delta q_t} dt$$

= $r_t(\mathbf{x})^2 f''(r_t(\mathbf{x})) \nabla_{\mathbf{x}} \log r_t(\mathbf{x}) dt$,

Rescaling the Vector Field

Now, the vector field is

 $v(\mathbf{x}) = r(\mathbf{x})^2 f''(r(\mathbf{x})) \nabla_{\mathbf{x}} \log r(\mathbf{x})$

If f is strictly convex, i.e., f''(r) > 0, then $r^2 f''(r) > 0$, we can let $h'(\log r) = r^2 f''(r)$

- A strictly convex f(r) determines a strictly increasing function h(log r), so prob flows of f-divergences fall into the class of MonoFlow.
- 2. Given a strictly increasing function h (suppose h' is smooth), let $h'(\log r)/r^2 = f''(r)$, there exists a strictly convex function f(r) satisfying $h(\log r) = rf'(r) f(r) + C$. MonoFlow implicitly defines a prob flow ODE of f-divergence.

Corollary: If the ODE minimizes an *f*-divergence, it simultaneously minimizes the KL divergence (but not the fastest rate).

Two Sample Density Ratio Estimation

If scalar functions ϕ and ψ satisfy certain conditions (Lemma 3.4, Yi et al. 2023)

$$\max_{d} \quad \mathbb{E}_{\mathbf{x} \sim p} \left[\phi(d(\mathbf{x})) \right] + \mathbb{E}_{\mathbf{x} \sim q} \left[\psi(d(\mathbf{x})) \right]$$
$$\implies r(\mathbf{x}) = p(\mathbf{x})/q(\mathbf{x}) = -\psi'(d^*(\mathbf{x}))/\phi'(d^*(\mathbf{x})) := \mathcal{T}(d^*(\mathbf{x}))$$

The discriminator approximates the bijection of the density ratio $d(\mathbf{x}) = \mathcal{T}^{-1}(r(\mathbf{x}))$

Bi-level optimization

1. Obtaining the density ratio via training the discriminator,

$$\max_{d} \quad \mathbb{E}_{\mathbf{x} \sim p} \left[\phi(d(\mathbf{x})) \right] + \mathbb{E}_{\mathbf{x} \sim q} \left[\psi(d(\mathbf{x})) \right]$$

2. Parametering particles via training the generator,

$$\min_{g} - \mathbb{E}_{\mathsf{z} \sim p_{\mathsf{z}}} \left[h_{\mathcal{T}} (d(g(\mathsf{z}))) \right],$$

where $h_{\mathcal{T}}(d) = h(\log(\mathcal{T}(d)))$ and h can be any increasing function with $h'(\cdot) > 0$.

Table 1: Different types of divergence GANs. f is a convex function and \tilde{f} is the convex conjugate $\tilde{f}(d) = \sup_{r \in \text{dom}(f)} \{rd - f(r)\}$. $r(\mathbf{x}) = p_{\text{data}}(\mathbf{x})/p_g(\mathbf{x})$.

	$\phi(d)$	$\psi(d)$	d*(x)	$h_{\mathcal{T}}(d)$
Vanilla GAN	$\log \sigma(d)$	$\log(1 - \sigma(d))$	$\log r(\mathbf{x})$	$-\log(1-\sigma(d))$
Non-saturated GAN	$\log \sigma(d)$	$\log(1 - \sigma(d))$	$\log r(\mathbf{x})$	$\log \sigma(d)$
<i>f</i> -GAN	d	$-\tilde{f}(d)$	f'(r(x))	d
b-gan	f'(d)	f(d) - df'(d)	<i>r</i> (x)	df'(d) - f(d)
Least-square GAN	$-(d-1)^2$	$-d^{2}$	$\frac{r(\mathbf{x})}{1+r(\mathbf{x})}$	$-(d-1)^2$
Generalized EBM (KL)	$-(d + \lambda)$	$-\exp(-d-\lambda)$	$-\log r(\mathbf{x}) - \lambda$	$\exp(-d - \lambda)$

Controversial to the conventional understanding!

- 1. Training the discriminator is to obtain the density ratio (or log ratio). Jensen-Shannon divergence is not the essential information!
- 2. Neither Vanilla GAN nor NS GAN minimize JSD. They are implicitly minimizing *f*-divergences determined by their *h*(*d*) functions.

For example, we estimated JSD but minimized the KL divergence in the previous demo of the prob flow ODE associated with Langevin dynamics.

Let's go back to the GAN [Goodfellow et al., 2014]. For a binary classification problem,

$$\max_{d} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left\{ \log \sigma[d(\mathbf{x})] \right\} + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}} \left\{ \log \left(1 - \sigma[d(g(\mathbf{z}))] \right) \right\},$$

where $\phi(d) = \log \sigma(d)$ and $\psi(d) = \log(1 - \sigma(d))$.

The optimal *d** satisfies

$$r(\mathbf{x}) := p_{\text{data}}(\mathbf{x})/p_g(\mathbf{x}) = -\psi'(d^*(\mathbf{x}))/\phi'(d^*(\mathbf{x}))$$
$$\implies d^*(\mathbf{x}) = \log r(\mathbf{x})$$

Empirical Results

Figure 2: Generator losses

$$d(\mathbf{x}) \approx \log \frac{p_{data}(\mathbf{x})}{p_g(\mathbf{x})} << 0$$

- 1. Vanilla loss: $h(d) = -\log(1 \sigma(d))$
- 2. Non-saturated (NS) loss: $h(d) = \log(\sigma(d)) \checkmark$
- 3. Maximum likelihood estimation (MLE): $h(d) = \exp(d)$
- 4. Logit loss: $h(d) = d \checkmark$
- 5. Arcsinh loss: $h(d) = \operatorname{arcsinh}(d) \checkmark$

An Embarrassingly Simple Trick to Fix the Vanilla GAN

Shifting the vanilla loss

$$h(d) = -\log(1 - \sigma(d + C))$$

Figure 3: Generator losses

Figure 4: From left to right C = 0, 1, 3, 5

- Need to train the discriminator per iteration to correct the ratio. No method is available to train a time-dependent ratio network atm.
- 2. Non-parametric approaches cannot scale up.
- 3. Can also be extended to IPM-GANs [Franceschi et al., 2023].

Suppose that given a target density $p(\mathbf{x})$ and a variational distribution $q(\mathbf{x}; \theta)$. Now, the density ratio is given by

$$r(\mathbf{x}; \theta) = \frac{p(\mathbf{x})}{q(\mathbf{x}; \theta)}$$

Recall that the "generator" loss of MonoFlow of the KL divergence

$$-\mathbb{E}_{z \sim p_z} [\log \mathcal{T}(d)], \text{ where } \mathcal{T}(d(x)) \approx r(x)$$

Replace $T(d(\mathbf{x}))$ with the true ratio $r(\mathbf{x}; \theta_s)$ where s represent the stop gradient operator. we have

$$-\mathbb{E}_{\mathsf{z}\sim p_{\mathsf{z}}}\big[\log r(g(\mathsf{z};\theta);\theta_{\mathsf{s}})\big]$$

Applying back propagation to the generator loss,

$$\begin{aligned} &- \mathbb{E}_{\mathsf{z} \sim \rho_{\mathsf{z}}} \big[\nabla_{\theta} \log r(g(\mathsf{z}; \theta); \theta_{\mathsf{s}}) \big] \\ &= \mathbb{E}_{\mathsf{z} \sim \rho_{\mathsf{z}}} \Big[\nabla_{\mathsf{x}} \log \big(q(\mathsf{x}; \theta_{\mathsf{s}}) / p(\mathsf{x}) \big) \big|_{\mathsf{x} = g(\mathsf{z}; \theta)} \circ \nabla_{\theta} g(\mathsf{z}; \theta) \Big] \end{aligned}$$

This recovers the "sticking the landing" gradient estimator of the KL [Roeder et al., 2017].

Continuous Time and Gaussian Family

If $q(\mathbf{x}; \theta) = \mathcal{N}(\mu, \Sigma)$ with $\Sigma = SS^T$ is a Gaussian distribution with parameter $\theta = (\mu, S)$ and the reparameterization is given by $\mathbf{x}_{\theta} = g(\mathbf{z}; \theta) = \mu + \mathbf{z}S^T, \mathbf{z} \sim \mathcal{N}(0, I)$. Sticking the landing estimator is given by

$$\begin{split} \nabla_{\mu} D_{\mathrm{KL}}(q_{\theta} || p) &= -\mathbb{E}_{\mathbf{x} \sim q_{\theta}} \left[\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x}; \theta)} \right], \\ \nabla_{\mathrm{S}} D_{\mathrm{KL}}(q_{\theta} || p) &= -\mathbb{E}_{\mathbf{x} \sim q_{\theta}} \left[\left(\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x}; \theta)} \right)^{\mathsf{T}} (\mathbf{x} - \mu) \mathsf{S}^{-\mathsf{T}} \right] \end{split}$$

ODE system (learning rate goes to zero):

$$\begin{aligned} \frac{\mathrm{d}\mu_t}{\mathrm{d}t} &= \mathbb{E}_{\mathbf{x} \sim q_t} \left[\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q_t(\mathbf{x})} \right], \\ \frac{\mathrm{d}S_t}{\mathrm{d}t} &= \mathbb{E}_{\mathbf{x} \sim q_t} \left[\left(\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q_t(\mathbf{x})} \right)^T (\mathbf{x} - \mu_t) S_t^{-T} \right] \end{aligned}$$

Riemannian Submersion

Let's consider two Riemannian manifolds $(\mathcal{M}, \mathcal{G}), (\mathcal{N}, \mathcal{Q})$ and a smooth map $\pi : \mathcal{M} \to \mathcal{N}$. For example, $\pi(S) = SS^{T}$.

Riemannian Submersion

- 1. The differential of the map $d\pi_S : \mathcal{T}_S \mathcal{M} \to \mathcal{T}_{\pi(S)} \mathcal{N}$ is surjective.
- 2. Metric Preservation: For $S \in M$, $\forall X, Y \in T_S M$ orthogonal to the kernel of $d\pi_S$, the following holds:

 $\mathcal{Q}(\mathrm{d}\pi_{\mathsf{S}}(\mathsf{X}),\mathrm{d}\pi_{\mathsf{S}}(\mathsf{Y}))=\mathcal{G}(\mathsf{X},\mathsf{Y})$

The kernel of $d\pi_S$ comprises a vertical space \mathcal{V}_S , its orthogonal complement is called a horizontal space \mathcal{H}_S .

 $\mathcal{T}_S\mathcal{M}=\mathcal{V}_S\oplus\mathcal{H}_S$

Horizontal curves are length preserving!

Consider two Gaussian measures $\mathcal{N}(0, SS^T)$ and $\mathcal{N}(0, S_0S_0^T)$

- $(\mathcal{M}, \mathcal{G})$ is the space of non-singular matrices equipped with the metric tensor \mathcal{G} . given by Frobenius inner product $\mathcal{G}(X, Y) = \operatorname{tr}(X^T Y)$.
- $(\mathcal{N}, \mathcal{Q})$ is the space of positive-definite matrices equipped with the metric tensor \mathcal{Q} .

If the map $\pi(S) = SS^{T}$, it can be verified the metric tensor Q induces the Wasserstein-2 distance between Gaussian measures [Takatsu, 2011, Bhatia et al., 2019].

Lemma [Yi and Liu, 2023]

Given two functionals: $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ and $\mathcal{E}:\mathcal{N}\to\mathbb{R}$ satisfying

$$\mathcal{F}(S) = \mathcal{E}(\pi(S)), \quad S \in \mathcal{M}$$

where the map π is the Riemannian submersion and $\operatorname{grad}_{\mathcal{G}}\mathcal{F}(S)$ is horizontal, we have

$$\operatorname{grad}_{\mathcal{Q}}\mathcal{E}(\pi(S)) = \mathrm{d}\pi_{S}(\operatorname{grad}_{\mathcal{G}}\mathcal{F}(S)).$$

Proposition [Yi and Liu, 2023]

The Euclidean gradient of the KL divergence w.r.t. the scale matrix S is horizontal, i.e., $\nabla_S D_{\text{KL}}(q_{\theta}||p) \cdot S^{-1}$ is symmetric.

Gaussian VI with the Euclidean gradient descent \Longleftrightarrow Steepest descent in Wasserstein geometry.

Now the magic:

Using the fact $d\Sigma = (dS)S^T + S(dS^T)$, the previous ODE leads to

$$\begin{split} \frac{\mathrm{d}\mu_t}{\mathrm{d}t} &= \mathbb{E}_{\mathbf{x} \sim q_t} \left[\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q_t(\mathbf{x})} \right], \\ \frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} &= \mathbb{E}_{\mathbf{x} \sim q_t} \left[\left(\nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q_t(\mathbf{x})} \right)^T (\mathbf{x} - \mu_t) \right] + \mathbb{E}_{\mathbf{x} \sim q_t} \left[(\mathbf{x} - \mu_t)^T \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q_t(\mathbf{x})} \right]. \end{split}$$

This is equal to the Bures-Wasserstein gradient flow [Lambert et al., 2022]. However, no optimal transport or Wasserstein calculus is needed. We used an entirely Euclidean approach!

References

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the bures-wasserstein distance between positive definite matrices. Expositiones Mathematicae, 37(2):165-191, 2019.

- Jean-Yves Franceschi, Emmanuel De Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, and Patrick Gallinari. A neural tangent kernel perspective of gans. In ICML, 2022.
- Jean-Yves Franceschi, Mike Gartrell, Ludovic Dos Santos, Thibaut Issenhuth, Emmanuel de Bézenac, Mickaël Chen, and Alain Rakotomamonjy. Unifying gans and score-based diffusion as generative particle models. *NeurIPS*, 2023.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.
- Marc Lambert, Sinho Chewi, Francis Bach, Silvère Bonnabel, and Philippe Rigollet. Variational inference via wasserstein gradient flows. In NeurIPS, 2022.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks. In ICLR, 2017.

- Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-variance gradient estimators for variational inference. In NeurIPS, 2017.
- Asuka Takatsu. Wasserstein geometry of gaussian measures. 2011.
- Mingxuan Yi and Song Liu. Bridging the gap between variational inference and wasserstein gradient flows. arXiv preprint arXiv:2310.20090, 2023.
- Mingxuan Yi, Zhanxing Zhu, and Song Liu. Monoflow: Rethinking divergence gans via the perspective of wasserstein gradient flows. In ICML, 2023.