
Divergence Minimizations:
From Sample Space to Parameter Space

Mingxuan Yi

University of Bristol

Optimal Transport

Kantorovich’s formula:
For q,p ∈ P(Rn), optimal transport is to find a coupling u ∈ Π(q,p),
such that

W2
2(q,p) = inf

u∈Π(q,p)

∫
∥x− y∥2du(x, y).

A coupling is a joint measure satisfying
∫
u(x, y)dx = p(y) and∫

u(x, y)dy = q(x).

• W2(q,p) is called the Wasserstein-2 distance between q and p.

Brenier’s formula:

W2
2(q,p) = inf

T

∫
∥x− T(x)∥2dq(x).

where T : Rn → Rn, the pushforward T#q = p, ϕ is a convex function
such that T = ∇xϕ.

1

Wasserstein Gradient Flows

Wasserstein space: Euclidean space:

−∇W2F(qt)

pq0

qt

W2(q0,p)

xt ∼ qt

vt = −∇x
δF
δqt (x)

∣∣∣
x=xt

p

The marginal qt evolves along the curve to decrease F(qt) and the
associated particles evolve with the vector field vt.

Continuity equation (Wasserstein space)
∂qt
∂t = div

(
qt∇W2F(qt)

)
,

Probability flow ODE (Euclidean space):

dxt = vt(xt)dt.

If {qt} is a geodesic, then qt = ((1− t)id + tT)#q, q0 = q,q1 = p. 2

Riemannian Structure

Continuity equation with a vector field
∂qt
∂t = −div

(
qtvt

)
Wasserstein space (P(Rn),W2) can be endowed with a Riemannian
structure. Given the characterization of the tangent space for
q ∈ P(Rn) as TqP(Rn) = {∇xϕ|ϕ ∈ C∞(Rn)} with inner product ⟨·, ·⟩q.
Denote the tangent vector of a curve qt as vt.

∂F(qt)
∂t = ⟨δF(qt)

δqt
,
∂qt
∂t ⟩L2 = −

∫
δF(qt)
δqt

· div
(
qtvt

)
dx

=

∫
∇x

δF(qt)
δqt

· vtdqt

= ⟨∇W2F(qt), vt⟩qt
The geodesic connecting q and p induced by the metric tensor (inner
product) has the length

W2(q,p) = inf

∫ 1

0

√
⟨vt, vt⟩qtdt, s.t.∂qt

∂t = −div
(
qtvt

)
3

A Special Case: Langevin Dynamics

The KL divergence from q to p,

KL(q||p) = F(q) =
∫

log
q(x)
p(x)dq,

The first variation is calculated as
δF(q)
δq = log q− log p+ 1

Continuity equation→ Fokker-Planck equation
∂qt
∂t = div

[
qt(∇x log qt −∇x log p)

]
,

Langevin SDE:
dxt = ∇x log p(xt)dt+

√
2dwt,

or the prob flow ODE:

dxt =
[
∇x log p(xt)−∇x log qt(xt)

]
dt

4

Moving Mass via the Prob Flow ODE (1)

Consider the problem similar to optimal transport:

Given some particles xq ∼ q, how do you move them to another
distribution p, if p is represented by some particles xp?

Estimating the vector field via binary classifications (logit trick)

max
d

Ex∼p
{
log σ[d(x)]

}
+ Ex∼q

{
log

(
1− σ[d(x)]

)}
=⇒ d∗(x) = log

[
p(x)/q(x)

]
Or equivalently, let D(x) = σ(d(x)),
Proposition 1 [Goodfellow et al., 2014]

max
D

Ex∼p
{
log[D(x)]

}
+ Ex∼q

{
log

(
1− D(x)

)}
=⇒ D∗(x) = p(x)

p(x) + q(x) =⇒ σ−1(D∗(x)) = log
[
p(x)/q(x)

]
5

Moving Mass via the Prob Flow ODE (2)

Bi-level optimization
1. Optimizing the discriminator d(x) using samples from p(x) and
q(x) such that we approximate d(x) ≈ log

[
p(x)/q(x)

]
.

2. Forward Euler discretization to the ODE: xt+1 = xt + ϵ∇xd(x)

Demo on https://mingxuan-yi.github.io/blog/2023/prob-flow-ode/

6

Parameterization of the Prob Flow ODE (1)

Suppose there is a generator xθ = g(z; θ) ∼ qθ, z ∼ pz,

Distilling particle flows
1. Move particles along the vector field,

x′ = stop_grad
{
xθ + ϵ∇xd(xθ)

}
2. Minimizing the quadratic loss

min
θ

l(θ) = 1
2Ez∼pz∥g(z; θ)− x′∥2

∇θl(θ) = Ez∼pz
[
(g(z; θ)− x′) ◦ ∇θg(z; θ)

]
= −ϵEz∼pz

[
∇xd(xθ) ◦ ∇θg(z; θ)

]
= −ϵ∇θEz∼pz

[
d(g(z; θ))

]
7

Parameterization of the Prob Flow ODE (2)

Bi-level optimization
1. Obtaining the vector field via training the discriminator d

max
d

Ex∼p
{
log σ[d(x)]

}
+ Ex∼qθ

{
log

(
1− σ[d(x)]

)}
2. Parametering particles via training the generator g

min
g

−Ez∼pz
[
d(g(z; θ))

]
Vanilla GANs [Goodfellow et al., 2014]
1. Training the discriminator d via

max
d

Ex∼p
{
log σ[d(x)]

}
+ Ex∼qθ

{
log

(
1− σ[d(x)]

)}
2. Training the generator g via

min
g

−Ez∼pz
[
h(d(g(z; θ)))

]
, h(d) = − log(1− σ(d)) 8

Issues with Adversarial Games

The adversarial game:

min
g

max
d
V(g,d) = Ex∼pdata

{
log σ[d(x)]

}
+ Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
Existing issues:
1. The discriminator d(x) loses the dependence on the generator’s
parameter. Integrating out x in the expectation, V is not a
function of g. [Metz et al., 2017, Franceschi et al., 2022]

2. The generator only minimizes the second term of the
Jensen-Shannon divergence Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
which is,

however, a KL divergence up to a constant.
3. Practical algorithms are inconsistent with the theory, a heuristic
trick “non-saturated loss” is commonly used to mitigate the
gradient vanishing problem. The NS loss takes the form
−Ez∼pz

{
log σ[d(g(z))]

}
.

9

Inconsistency with Practical Algorithms

We can even modify the generator loss to the logit loss
−Ez∼pz

{
d(g(z))

}
or the arcsinh loss −Ez∼pz

{
arcsinh

(
d(g(z))

)}
.

Figure 1: Generated Celeb-A faces with the logit loss and the arcsinh loss.

All of the above generator losses satisfy

−Ez∼pz
{
h[d(g(z))]

}
,

where h : R → R is a monotone increasing function with h′(·) > 0.

10

Motivation

The adversarial game framework lacks a rigorous explanation to
these issues.

GAN’s theory needs to be reformulated!

11

MonoFlow

Let’s go back to the probability flow ODE, rewrite it as

dxt = ∇x log rt(xt)dt, rt(x) =
p(x)
qt(x)

MonoFlow
MonoFlow is defined by the following ODE:

dxt = ∇xh
(
log rt(xt)

)
dt = h′

(
log rt(xt)

)
∇x log rt(xt)dt

where h : R → R is a monotone increasing function with h′(·) > 0,

12

Decreasing the KL divergence

Recall the KL divergence and its Wasserstein gradient,

KL(q||p) = F(q) =
∫

log
q(x)
p(x)dq,

∇W2F(q) = ∇x log qt −∇x log p = − log rt

Dissipation rate of the KL divergence
For any vt ∈ TqtP(Rn), the dissipation rate:

∂F(qt)
∂t = ⟨∇W2F(q), vt⟩qt

= −
∫
h′(log rt(x))∥ log rt(x)∥2dqt ≤ 0

13

The Probability Flow ODE of f-divergences

Given f-divergences:

F(q) =
∫
f
(
r(x)

)
dq, r(x) = p(x)/q(x),

where f is convex and f(1) = 0.

The first variation of f-divergence
δF(q)
δq = f(r)− rf ′(r), r = p

q

The ODE of f-divergence

dx = −∇x
δF(qt)
δqt

dt

= rt(x)2f ′′(rt(x))∇x log rt(x)dt,

14

Rescaling the Vector Field

Now, the vector field is

v(x) = r(x)2f ′′(r(x))∇x log r(x)

If f is strictly convex, i.e., f ′′(r) > 0, then r2f ′′(r) > 0, we can let
h′(log r) = r2f ′′(r)

1. A strictly convex f(r) determines a strictly increasing function
h(log r), so prob flows of f-divergences fall into the class of
MonoFlow.

2. Given a strictly increasing function h (suppose h′ is smooth), let
h′(log r)/r2 = f ′′(r), there exists a strictly convex function f(r)
satisfying h(log r) = rf ′(r)− f(r) + C. MonoFlow implicitly
defines a prob flow ODE of f-divergence.

Corollary: If the ODE minimizes an f-divergence, it simultaneously
minimizes the KL divergence (but not the fastest rate).

15

A General Framework for Two-Sample Density Ratio Estimation

Two Sample Density Ratio Estimation
If scalar functions ϕ and ψ satisfy certain conditions (Lemma 3.4, Yi
et al. 2023)

max
d

Ex∼p
[
ϕ
(
d(x)

)]
+ Ex∼q

[
ψ
(
d(x)

)]
=⇒ r(x) = p(x)/q(x) = −ψ′(d∗(x))/ϕ′(d∗(x)) := T (d∗(x))

The discriminator approximates the bijection of the density ratio
d(x) = T −1(r(x))

16

Parametric MonoFlow

Bi-level optimization
1. Obtaining the density ratio via training the discriminator,

max
d

Ex∼p
[
ϕ
(
d(x)

)]
+ Ex∼q

[
ψ
(
d(x)

)]
2. Parametering particles via training the generator,

min
g

−Ez∼pz
[
hT

(
d(g(z))

)]
,

where hT (d) = h
(
log(T (d))

)
and h can be any increasing

function with h′(·) > 0.

17

Unified Framework for Divergence GANs

Table 1: Different types of divergence GANs. f is a convex function and f̃ is
the convex conjugate f̃(d) = supr∈dom(f){rd− f(r)}. r(x) = pdata(x)/pg(x).

ϕ(d) ψ(d) d∗(x) hT (d)

Vanilla GAN log σ(d) log(1− σ(d)) log r(x) − log(1− σ(d))
Non-saturated GAN log σ(d) log(1− σ(d)) log r(x) log σ(d)
f-GAN d −f̃(d) f ′(r(x)) d
b-GAN f ′(d) f(d)− df ′(d) r(x) df ′(d)− f(d)
Least-square GAN −(d− 1)2 −d2 r(x)

1+r(x) −(d− 1)2

Generalized EBM (KL) −(d+ λ) − exp(−d− λ) − log r(x)− λ exp(−d− λ)

18

Vanilla GAN and NS GAN in MonoFlow Framework

Controversial to the conventional understanding!

1. Training the discriminator is to obtain the density ratio (or log
ratio). Jensen-Shannon divergence is not the essential
information!

2. Neither Vanilla GAN nor NS GAN minimize JSD. They are implicitly
minimizing f-divergences determined by their h(d) functions.

For example, we estimated JSD but minimized the KL divergence in
the previous demo of the prob flow ODE associated with Langevin
dynamics.

19

Empirical Results

Let’s go back to the GAN [Goodfellow et al., 2014]. For a binary
classification problem,

max
d

Ex∼pdata

{
log σ[d(x)]

}
+ Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
,

where ϕ(d) = log σ(d) and ψ(d) = log(1− σ(d)).

The optimal d∗ satisfies

r(x) := pdata(x)/pg(x) = −ψ′(d∗(x))/ϕ′(d∗(x))
=⇒ d∗(x) = log r(x)

20

Empirical Results

Figure 2: Generator losses

d(x) ≈ log
pdata(x)
pg(x)

<< 0

1. Vanilla loss: h(d) = − log(1− σ(d))
2. Non-saturated (NS) loss: h(d) = log(σ(d)) ✓
3. Maximum likelihood estimation (MLE): h(d) = exp(d)
4. Logit loss: h(d) = d ✓
5. Arcsinh loss: h(d) = arcsinh(d) ✓ 21

An Embarrassingly Simple Trick to Fix the Vanilla GAN

Shifting the vanilla loss

h(d) = − log(1− σ(d+ C))

Figure 3: Generator losses

Figure 4: From left to right C = 0, 1, 3, 5
22

Discussions

1. Need to train the discriminator per iteration to correct the ratio.
No method is available to train a time-dependent ratio network
atm.

2. Non-parametric approaches cannot scale up.
3. Can also be extended to IPM-GANs [Franceschi et al., 2023].

23

Connections to Variational Inference

Suppose that given a target density p(x) and a variational
distribution q(x; θ). Now, the density ratio is given by

r(x; θ) = p(x)
q(x; θ)

Recall that the ”generator” loss of MonoFlow of the KL divergence

−Ez∼pz
[
log T (d)

]
, where T (d(x)) ≈ r(x)

Replace T (d(x)) with the true ratio r(x; θs) where s represent the
stop gradient operator. we have

−Ez∼pz
[
log r(g(z; θ); θs)

]

24

Connections to Variational Inference

Applying back propagation to the generator loss,

− Ez∼pz
[
∇θ log r(g(z; θ); θs)

]
= Ez∼pz

[
∇x log

(
q(x; θs)/p(x)

)
|x=g(z;θ) ◦ ∇θg(z; θ)

]
This recovers the ”sticking the landing” gradient estimator of the KL
[Roeder et al., 2017].

25

Continuous Time and Gaussian Family

If q(x; θ) = N (µ,Σ) with Σ = SST is a Gaussian distribution with
parameter θ = (µ, S) and the reparameterization is given by
xθ = g(z; θ) = µ+ zST, z ∼ N (0, I). Sticking the landing estimator is
given by

∇µDKL(qθ||p) = −Ex∼qθ
[
∇x log

p(x)
q(x; θ)

]
,

∇SDKL(qθ||p) = −Ex∼qθ

[(
∇x log

p(x)
q(x; θ)

)T
(x− µ)S−T

]
ODE system (learning rate goes to zero):

dµt
dt = Ex∼qt

[
∇x log

p(x)
qt(x)

]
,

dSt
dt = Ex∼qt

[(
∇x log

p(x)
qt(x)

)T
(x− µt)S−Tt

]
.

26

Riemannian Submersion

Let’s consider two Riemannian manifolds (M,G), (N ,Q) and a
smooth map π : M → N . For example, π(S) = SST.

Riemannian Submersion
1. The differential of the map dπS : TSM → Tπ(S)N is surjective.
2. Metric Preservation: For S ∈ M, ∀X, Y ∈ TSM orthogonal to the
kernel of dπS, the following holds:

Q(dπS(X), dπS(Y)) = G(X, Y)

The kernel of dπS comprises a vertical space VS, its orthogonal
complement is called a horizontal spaceHS.

TSM = VS ⊕HS

Horizontal curves are length preserving!

27

From Euclidean Geometry to Wasserstein Geometry (1)

Consider two Gaussian measures N (0, SST) and N (0, S0ST0)

• (M,G) is the space of non-singular matrices equipped with the
metric tensor G. given by Frobenius inner product
G(X, Y) = tr(XTY).

• (N ,Q) is the space of positive-definite matrices equipped with
the metric tensor Q.

If the map π(S) = SST, it can be verified the metric tensor Q induces
the Wasserstein-2 distance between Gaussian measures [Takatsu,
2011, Bhatia et al., 2019].

28

From Euclidean Geometry to Wasserstein Geometry (2)

Lemma [Yi and Liu, 2023]
Given two functionals: F : M → R and E : N → R satisfying

F(S) = E(π(S)), S ∈ M

where the map π is the Riemannian submersion and gradGF(S) is
horizontal, we have

gradQE(π(S)) = dπS
(
gradGF(S)

)
.

Proposition [Yi and Liu, 2023]
The Euclidean gradient of the KL divergence w.r.t. the scale matrix S
is horizontal, i.e., ∇SDKL(qθ||p) · S−1 is symmetric.

29

Gaussian VI as Wasserstein Natural Gradient Descent

Gaussian VI with the Euclidean gradient descent⇐⇒ Steepest
descent in Wasserstein geometry.

Now the magic:
Using the fact dΣ = (dS)ST + S(dST), the previous ODE leads to

dµt
dt = Ex∼qt

[
∇x log

p(x)
qt(x)

]
,

dΣt
dt = Ex∼qt

[(
∇x log

p(x)
qt(x)

)T
(x− µt)

]
+ Ex∼qt

[
(x− µt)

T∇x log
p(x)
qt(x)

]
.

This is equal to the Bures-Wasserstein gradient flow [Lambert et al.,
2022]. However, no optimal transport or Wasserstein calculus is
needed. We used an entirely Euclidean approach!

30

References

References

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the bures–wasserstein distance between positive definite matrices. Expositiones
Mathematicae, 37(2):165–191, 2019.

Jean-Yves Franceschi, Emmanuel De Bézenac, Ibrahim Ayed, Mickaël Chen, Sylvain Lamprier, and Patrick Gallinari. A neural tangent kernel
perspective of gans. In ICML, 2022.

Jean-Yves Franceschi, Mike Gartrell, Ludovic Dos Santos, Thibaut Issenhuth, Emmanuel de Bézenac, Mickaël Chen, and Alain
Rakotomamonjy. Unifying gans and score-based diffusion as generative particle models. NeurIPS, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In NeurIPS, 2014.

Marc Lambert, Sinho Chewi, Francis Bach, Silvère Bonnabel, and Philippe Rigollet. Variational inference via wasserstein gradient flows. In
NeurIPS, 2022.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks. In ICLR, 2017.

Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the landing: Simple, lower-variance gradient estimators for variational
inference. In NeurIPS, 2017.

Asuka Takatsu. Wasserstein geometry of gaussian measures. 2011.

Mingxuan Yi and Song Liu. Bridging the gap between variational inference and wasserstein gradient flows. arXiv preprint arXiv:2310.20090,
2023.

Mingxuan Yi, Zhanxing Zhu, and Song Liu. Monoflow: Rethinking divergence gans via the perspective of wasserstein gradient flows. In ICML,
2023.

31

	References

