Publications

2023

  1. Arxiv
    Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
    Mingxuan Yi, and Song Liu
    arXiv preprint arXiv:2310.20090, 2023
  2. Arxiv
    Variational Gradient Descent Using Local Linear Models
    Song Liu, Jack Simons, Mingxuan Yi, and Mark Beaumont
    arXiv preprint arXiv:2305.15577, 2023
  3. ICML
    MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows
    Mingxuan Yi, Zhanxing Zhu, and Song Liu
    In the 40th International Conference on Machine Learning, 2023

2022

  1. ACMLAABI
    Sliced Wasserstein Variational Inference
    Mingxuan Yi, and Song Liu
    In the 14th Asian Conference on Machine Learning, also in the 4th Symposium on Advances in Approximate Bayesian Inference (AABI), 2022
    Best student paper (ACML), contributed talk (AABI)

2020

  1. Arxiv
    Posterior Ratio Estimation of Latent Variables
    Song Liu, Yulong Zhang, Mingxuan Yi, and Mladen Kolar
    arXiv preprint arXiv:2002.06410, 2020